\(\int \frac {\sec ^2(c+d x) \tan (c+d x)}{a+b \sin (c+d x)} \, dx\) [1348]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 27, antiderivative size = 117 \[ \int \frac {\sec ^2(c+d x) \tan (c+d x)}{a+b \sin (c+d x)} \, dx=-\frac {b \log (1-\sin (c+d x))}{4 (a+b)^2 d}+\frac {b \log (1+\sin (c+d x))}{4 (a-b)^2 d}-\frac {a b^2 \log (a+b \sin (c+d x))}{\left (a^2-b^2\right )^2 d}+\frac {\sec ^2(c+d x) (a-b \sin (c+d x))}{2 \left (a^2-b^2\right ) d} \]

[Out]

-1/4*b*ln(1-sin(d*x+c))/(a+b)^2/d+1/4*b*ln(1+sin(d*x+c))/(a-b)^2/d-a*b^2*ln(a+b*sin(d*x+c))/(a^2-b^2)^2/d+1/2*
sec(d*x+c)^2*(a-b*sin(d*x+c))/(a^2-b^2)/d

Rubi [A] (verified)

Time = 0.12 (sec) , antiderivative size = 117, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.148, Rules used = {2916, 12, 837, 815} \[ \int \frac {\sec ^2(c+d x) \tan (c+d x)}{a+b \sin (c+d x)} \, dx=-\frac {a b^2 \log (a+b \sin (c+d x))}{d \left (a^2-b^2\right )^2}+\frac {\sec ^2(c+d x) (a-b \sin (c+d x))}{2 d \left (a^2-b^2\right )}-\frac {b \log (1-\sin (c+d x))}{4 d (a+b)^2}+\frac {b \log (\sin (c+d x)+1)}{4 d (a-b)^2} \]

[In]

Int[(Sec[c + d*x]^2*Tan[c + d*x])/(a + b*Sin[c + d*x]),x]

[Out]

-1/4*(b*Log[1 - Sin[c + d*x]])/((a + b)^2*d) + (b*Log[1 + Sin[c + d*x]])/(4*(a - b)^2*d) - (a*b^2*Log[a + b*Si
n[c + d*x]])/((a^2 - b^2)^2*d) + (Sec[c + d*x]^2*(a - b*Sin[c + d*x]))/(2*(a^2 - b^2)*d)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 815

Int[(((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_)))/((a_) + (c_.)*(x_)^2), x_Symbol] :> Int[ExpandIntegrand[(
d + e*x)^m*((f + g*x)/(a + c*x^2)), x], x] /; FreeQ[{a, c, d, e, f, g}, x] && NeQ[c*d^2 + a*e^2, 0] && Integer
Q[m]

Rule 837

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(-(d + e*x)^(
m + 1))*(f*a*c*e - a*g*c*d + c*(c*d*f + a*e*g)*x)*((a + c*x^2)^(p + 1)/(2*a*c*(p + 1)*(c*d^2 + a*e^2))), x] +
Dist[1/(2*a*c*(p + 1)*(c*d^2 + a*e^2)), Int[(d + e*x)^m*(a + c*x^2)^(p + 1)*Simp[f*(c^2*d^2*(2*p + 3) + a*c*e^
2*(m + 2*p + 3)) - a*c*d*e*g*m + c*e*(c*d*f + a*e*g)*(m + 2*p + 4)*x, x], x], x] /; FreeQ[{a, c, d, e, f, g},
x] && NeQ[c*d^2 + a*e^2, 0] && LtQ[p, -1] && (IntegerQ[m] || IntegerQ[p] || IntegersQ[2*m, 2*p])

Rule 2916

Int[cos[(e_.) + (f_.)*(x_)]^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)
*(x_)])^(n_.), x_Symbol] :> Dist[1/(b^p*f), Subst[Int[(a + x)^m*(c + (d/b)*x)^n*(b^2 - x^2)^((p - 1)/2), x], x
, b*Sin[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x] && IntegerQ[(p - 1)/2] && NeQ[a^2 - b^2, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {b^3 \text {Subst}\left (\int \frac {x}{b (a+x) \left (b^2-x^2\right )^2} \, dx,x,b \sin (c+d x)\right )}{d} \\ & = \frac {b^2 \text {Subst}\left (\int \frac {x}{(a+x) \left (b^2-x^2\right )^2} \, dx,x,b \sin (c+d x)\right )}{d} \\ & = \frac {\sec ^2(c+d x) (a-b \sin (c+d x))}{2 \left (a^2-b^2\right ) d}-\frac {\text {Subst}\left (\int \frac {-a b^2+b^2 x}{(a+x) \left (b^2-x^2\right )} \, dx,x,b \sin (c+d x)\right )}{2 \left (a^2-b^2\right ) d} \\ & = \frac {\sec ^2(c+d x) (a-b \sin (c+d x))}{2 \left (a^2-b^2\right ) d}-\frac {\text {Subst}\left (\int \left (\frac {b (-a+b)}{2 (a+b) (b-x)}+\frac {2 a b^2}{(a-b) (a+b) (a+x)}-\frac {b (a+b)}{2 (a-b) (b+x)}\right ) \, dx,x,b \sin (c+d x)\right )}{2 \left (a^2-b^2\right ) d} \\ & = -\frac {b \log (1-\sin (c+d x))}{4 (a+b)^2 d}+\frac {b \log (1+\sin (c+d x))}{4 (a-b)^2 d}-\frac {a b^2 \log (a+b \sin (c+d x))}{\left (a^2-b^2\right )^2 d}+\frac {\sec ^2(c+d x) (a-b \sin (c+d x))}{2 \left (a^2-b^2\right ) d} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.45 (sec) , antiderivative size = 108, normalized size of antiderivative = 0.92 \[ \int \frac {\sec ^2(c+d x) \tan (c+d x)}{a+b \sin (c+d x)} \, dx=\frac {-\frac {b \log (1-\sin (c+d x))}{(a+b)^2}+\frac {b \log (1+\sin (c+d x))}{(a-b)^2}-\frac {4 a b^2 \log (a+b \sin (c+d x))}{\left (a^2-b^2\right )^2}-\frac {1}{(a+b) (-1+\sin (c+d x))}+\frac {1}{(a-b) (1+\sin (c+d x))}}{4 d} \]

[In]

Integrate[(Sec[c + d*x]^2*Tan[c + d*x])/(a + b*Sin[c + d*x]),x]

[Out]

(-((b*Log[1 - Sin[c + d*x]])/(a + b)^2) + (b*Log[1 + Sin[c + d*x]])/(a - b)^2 - (4*a*b^2*Log[a + b*Sin[c + d*x
]])/(a^2 - b^2)^2 - 1/((a + b)*(-1 + Sin[c + d*x])) + 1/((a - b)*(1 + Sin[c + d*x])))/(4*d)

Maple [A] (verified)

Time = 0.49 (sec) , antiderivative size = 112, normalized size of antiderivative = 0.96

method result size
derivativedivides \(\frac {-\frac {b^{2} a \ln \left (a +b \sin \left (d x +c \right )\right )}{\left (a +b \right )^{2} \left (a -b \right )^{2}}-\frac {1}{\left (4 a +4 b \right ) \left (\sin \left (d x +c \right )-1\right )}-\frac {b \ln \left (\sin \left (d x +c \right )-1\right )}{4 \left (a +b \right )^{2}}+\frac {1}{\left (4 a -4 b \right ) \left (1+\sin \left (d x +c \right )\right )}+\frac {b \ln \left (1+\sin \left (d x +c \right )\right )}{4 \left (a -b \right )^{2}}}{d}\) \(112\)
default \(\frac {-\frac {b^{2} a \ln \left (a +b \sin \left (d x +c \right )\right )}{\left (a +b \right )^{2} \left (a -b \right )^{2}}-\frac {1}{\left (4 a +4 b \right ) \left (\sin \left (d x +c \right )-1\right )}-\frac {b \ln \left (\sin \left (d x +c \right )-1\right )}{4 \left (a +b \right )^{2}}+\frac {1}{\left (4 a -4 b \right ) \left (1+\sin \left (d x +c \right )\right )}+\frac {b \ln \left (1+\sin \left (d x +c \right )\right )}{4 \left (a -b \right )^{2}}}{d}\) \(112\)
parallelrisch \(\frac {-2 b^{2} a \left (1+\cos \left (2 d x +2 c \right )\right ) \ln \left (2 b \tan \left (\frac {d x}{2}+\frac {c}{2}\right )+a \left (\sec ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )\right )-b \left (a -b \right )^{2} \left (1+\cos \left (2 d x +2 c \right )\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )-\left (-b \left (1+\cos \left (2 d x +2 c \right )\right ) \left (a +b \right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )+\left (a -b \right ) \left (a \cos \left (2 d x +2 c \right )+2 b \sin \left (d x +c \right )-a \right )\right ) \left (a +b \right )}{2 \left (a -b \right )^{2} \left (a +b \right )^{2} d \left (1+\cos \left (2 d x +2 c \right )\right )}\) \(174\)
norman \(\frac {-\frac {b \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{d \left (a^{2}-b^{2}\right )}-\frac {b \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d \left (a^{2}-b^{2}\right )}+\frac {2 a \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{\left (a^{2}-b^{2}\right ) d}}{\left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{2}}+\frac {b \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{2 d \left (a^{2}-2 a b +b^{2}\right )}-\frac {b \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{2 \left (a^{2}+2 a b +b^{2}\right ) d}-\frac {a \,b^{2} \ln \left (\left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a +2 b \tan \left (\frac {d x}{2}+\frac {c}{2}\right )+a \right )}{d \left (a^{4}-2 a^{2} b^{2}+b^{4}\right )}\) \(217\)
risch \(\frac {i b x}{2 a^{2}+4 a b +2 b^{2}}+\frac {i b c}{2 \left (a^{2}+2 a b +b^{2}\right ) d}-\frac {i b x}{2 \left (a^{2}-2 a b +b^{2}\right )}-\frac {i b c}{2 d \left (a^{2}-2 a b +b^{2}\right )}+\frac {2 i a \,b^{2} x}{a^{4}-2 a^{2} b^{2}+b^{4}}+\frac {2 i a \,b^{2} c}{d \left (a^{4}-2 a^{2} b^{2}+b^{4}\right )}+\frac {i \left (-2 i a \,{\mathrm e}^{2 i \left (d x +c \right )}+b \,{\mathrm e}^{3 i \left (d x +c \right )}-b \,{\mathrm e}^{i \left (d x +c \right )}\right )}{\left (a^{2}-b^{2}\right ) d \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right )^{2}}-\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right ) b}{2 \left (a^{2}+2 a b +b^{2}\right ) d}+\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right ) b}{2 \left (a^{2}-2 a b +b^{2}\right ) d}-\frac {a \,b^{2} \ln \left ({\mathrm e}^{2 i \left (d x +c \right )}-1+\frac {2 i a \,{\mathrm e}^{i \left (d x +c \right )}}{b}\right )}{d \left (a^{4}-2 a^{2} b^{2}+b^{4}\right )}\) \(318\)

[In]

int(sec(d*x+c)^3*sin(d*x+c)/(a+b*sin(d*x+c)),x,method=_RETURNVERBOSE)

[Out]

1/d*(-b^2*a/(a+b)^2/(a-b)^2*ln(a+b*sin(d*x+c))-1/(4*a+4*b)/(sin(d*x+c)-1)-1/4*b/(a+b)^2*ln(sin(d*x+c)-1)+1/(4*
a-4*b)/(1+sin(d*x+c))+1/4*b/(a-b)^2*ln(1+sin(d*x+c)))

Fricas [A] (verification not implemented)

none

Time = 0.41 (sec) , antiderivative size = 155, normalized size of antiderivative = 1.32 \[ \int \frac {\sec ^2(c+d x) \tan (c+d x)}{a+b \sin (c+d x)} \, dx=-\frac {4 \, a b^{2} \cos \left (d x + c\right )^{2} \log \left (b \sin \left (d x + c\right ) + a\right ) - {\left (a^{2} b + 2 \, a b^{2} + b^{3}\right )} \cos \left (d x + c\right )^{2} \log \left (\sin \left (d x + c\right ) + 1\right ) + {\left (a^{2} b - 2 \, a b^{2} + b^{3}\right )} \cos \left (d x + c\right )^{2} \log \left (-\sin \left (d x + c\right ) + 1\right ) - 2 \, a^{3} + 2 \, a b^{2} + 2 \, {\left (a^{2} b - b^{3}\right )} \sin \left (d x + c\right )}{4 \, {\left (a^{4} - 2 \, a^{2} b^{2} + b^{4}\right )} d \cos \left (d x + c\right )^{2}} \]

[In]

integrate(sec(d*x+c)^3*sin(d*x+c)/(a+b*sin(d*x+c)),x, algorithm="fricas")

[Out]

-1/4*(4*a*b^2*cos(d*x + c)^2*log(b*sin(d*x + c) + a) - (a^2*b + 2*a*b^2 + b^3)*cos(d*x + c)^2*log(sin(d*x + c)
 + 1) + (a^2*b - 2*a*b^2 + b^3)*cos(d*x + c)^2*log(-sin(d*x + c) + 1) - 2*a^3 + 2*a*b^2 + 2*(a^2*b - b^3)*sin(
d*x + c))/((a^4 - 2*a^2*b^2 + b^4)*d*cos(d*x + c)^2)

Sympy [F]

\[ \int \frac {\sec ^2(c+d x) \tan (c+d x)}{a+b \sin (c+d x)} \, dx=\int \frac {\sin {\left (c + d x \right )} \sec ^{3}{\left (c + d x \right )}}{a + b \sin {\left (c + d x \right )}}\, dx \]

[In]

integrate(sec(d*x+c)**3*sin(d*x+c)/(a+b*sin(d*x+c)),x)

[Out]

Integral(sin(c + d*x)*sec(c + d*x)**3/(a + b*sin(c + d*x)), x)

Maxima [A] (verification not implemented)

none

Time = 0.21 (sec) , antiderivative size = 132, normalized size of antiderivative = 1.13 \[ \int \frac {\sec ^2(c+d x) \tan (c+d x)}{a+b \sin (c+d x)} \, dx=-\frac {\frac {4 \, a b^{2} \log \left (b \sin \left (d x + c\right ) + a\right )}{a^{4} - 2 \, a^{2} b^{2} + b^{4}} - \frac {b \log \left (\sin \left (d x + c\right ) + 1\right )}{a^{2} - 2 \, a b + b^{2}} + \frac {b \log \left (\sin \left (d x + c\right ) - 1\right )}{a^{2} + 2 \, a b + b^{2}} - \frac {2 \, {\left (b \sin \left (d x + c\right ) - a\right )}}{{\left (a^{2} - b^{2}\right )} \sin \left (d x + c\right )^{2} - a^{2} + b^{2}}}{4 \, d} \]

[In]

integrate(sec(d*x+c)^3*sin(d*x+c)/(a+b*sin(d*x+c)),x, algorithm="maxima")

[Out]

-1/4*(4*a*b^2*log(b*sin(d*x + c) + a)/(a^4 - 2*a^2*b^2 + b^4) - b*log(sin(d*x + c) + 1)/(a^2 - 2*a*b + b^2) +
b*log(sin(d*x + c) - 1)/(a^2 + 2*a*b + b^2) - 2*(b*sin(d*x + c) - a)/((a^2 - b^2)*sin(d*x + c)^2 - a^2 + b^2))
/d

Giac [A] (verification not implemented)

none

Time = 0.44 (sec) , antiderivative size = 170, normalized size of antiderivative = 1.45 \[ \int \frac {\sec ^2(c+d x) \tan (c+d x)}{a+b \sin (c+d x)} \, dx=-\frac {\frac {4 \, a b^{3} \log \left ({\left | b \sin \left (d x + c\right ) + a \right |}\right )}{a^{4} b - 2 \, a^{2} b^{3} + b^{5}} - \frac {b \log \left ({\left | \sin \left (d x + c\right ) + 1 \right |}\right )}{a^{2} - 2 \, a b + b^{2}} + \frac {b \log \left ({\left | \sin \left (d x + c\right ) - 1 \right |}\right )}{a^{2} + 2 \, a b + b^{2}} + \frac {2 \, {\left (a b^{2} \sin \left (d x + c\right )^{2} - a^{2} b \sin \left (d x + c\right ) + b^{3} \sin \left (d x + c\right ) + a^{3} - 2 \, a b^{2}\right )}}{{\left (a^{4} - 2 \, a^{2} b^{2} + b^{4}\right )} {\left (\sin \left (d x + c\right )^{2} - 1\right )}}}{4 \, d} \]

[In]

integrate(sec(d*x+c)^3*sin(d*x+c)/(a+b*sin(d*x+c)),x, algorithm="giac")

[Out]

-1/4*(4*a*b^3*log(abs(b*sin(d*x + c) + a))/(a^4*b - 2*a^2*b^3 + b^5) - b*log(abs(sin(d*x + c) + 1))/(a^2 - 2*a
*b + b^2) + b*log(abs(sin(d*x + c) - 1))/(a^2 + 2*a*b + b^2) + 2*(a*b^2*sin(d*x + c)^2 - a^2*b*sin(d*x + c) +
b^3*sin(d*x + c) + a^3 - 2*a*b^2)/((a^4 - 2*a^2*b^2 + b^4)*(sin(d*x + c)^2 - 1)))/d

Mupad [B] (verification not implemented)

Time = 12.54 (sec) , antiderivative size = 208, normalized size of antiderivative = 1.78 \[ \int \frac {\sec ^2(c+d x) \tan (c+d x)}{a+b \sin (c+d x)} \, dx=\frac {b\,\ln \left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )+1\right )}{2\,d\,{\left (a-b\right )}^2}-\frac {\frac {b\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{a^2-b^2}-\frac {2\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2}{a^2-b^2}+\frac {b\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3}{a^2-b^2}}{d\,\left ({\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4-2\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+1\right )}-\frac {b\,\ln \left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )-1\right )}{2\,d\,{\left (a+b\right )}^2}-\frac {a\,b^2\,\ln \left (a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+2\,b\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )+a\right )}{d\,\left (a^4-2\,a^2\,b^2+b^4\right )} \]

[In]

int(sin(c + d*x)/(cos(c + d*x)^3*(a + b*sin(c + d*x))),x)

[Out]

(b*log(tan(c/2 + (d*x)/2) + 1))/(2*d*(a - b)^2) - ((b*tan(c/2 + (d*x)/2))/(a^2 - b^2) - (2*a*tan(c/2 + (d*x)/2
)^2)/(a^2 - b^2) + (b*tan(c/2 + (d*x)/2)^3)/(a^2 - b^2))/(d*(tan(c/2 + (d*x)/2)^4 - 2*tan(c/2 + (d*x)/2)^2 + 1
)) - (b*log(tan(c/2 + (d*x)/2) - 1))/(2*d*(a + b)^2) - (a*b^2*log(a + 2*b*tan(c/2 + (d*x)/2) + a*tan(c/2 + (d*
x)/2)^2))/(d*(a^4 + b^4 - 2*a^2*b^2))